生物活性: |
靶点:Others 通路:Others 背景说明:DPPH是一种稳定的自由基,可用于测量抗氧化剂的自由基清除活性。DPPH自由基有单电子,其醇溶液呈紫色性,在517nm处有一强吸收。当有自由基清除剂存在时,由于与其单电子配对而使其吸收逐渐消失,其褪色程度与其接受的电子数量成定量关系,因而可用分光光度计进行快速的定量分析。 生物活性:DPPH是一种稳定的自由基,可用于测量抗氧化剂的自由基清除活性。DPPH 中氮原子的奇数电子通过从抗氧化剂吸收氢原子而还原为相应的肼。DPPH 方法可用于水性和非极性有机溶剂中,并可用于检查亲水性和亲脂性抗氧化剂[1]。 In Vitro:DPPH由于其奇数电子而在517nm处显示出强吸收带,并且溶液呈现深紫色,当电子对断开时吸收消失。得到的脱色相对于吸收的电子数是化学计量的。0.5 mM的酒精溶液颜色密集,在此浓度下,在有用的吸收范围内遵守Lambert-Beer定律[1]。DPPH测定是一种快速,简单,廉价且广泛使用的方法,用于测量化合物作为自由基清除剂或氢供体的能力,并评估食物的抗氧化活性。它还可用于量化复杂生物系统中的抗氧化剂,固体或液体样品。该方法简便,适用于测定果汁和蔬菜汁的总抗氧化能力和自由基清除活性。该试验已成功用于研究小麦籽粒和麸皮,蔬菜,共轭亚油酸,草药,食用种子油和面粉在几种不同溶剂体系中的抗氧化性能,包括乙醇,丙酮水溶液,甲醇,乙醇水溶液和苯。它是一种方便的方法,用于橄榄油,水果,果汁和葡萄酒中半胱氨酸,谷胱甘肽,抗坏血酸,生育酚和多羟基芳香族化合物的抗氧化测定[1]。 数据来源文献:[1]. Kedare SB, et al. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011 Aug;48(4):412-22.
|
其它标识: |
EC:EINECS 217-591-8 MDL:MFCD00007231 SMILES:O=[N+](C1=C([N]N(C2=CC=CC=C2)C3=CC=CC=C3)C([N+]([O-])=O)=CC([N+]([O-])=O)=C1)[O-]
|
基本信息: |
CAS:1898-66-4 中文名称:1,1-二苯基-2-苦基肼 英文名称:DPPH 别名:1,1-二苯基-2-苦基肼;2,2-联苯基-1-苦基肼基;2,2-diphenyl-1-picrylhydrazyl (EPR spectroscopy) 分子式:C18H12N5O6 分子量:394.32 规格:10mg ; 10mM*1mL in DMSO ; 50mg ; 5mg 溶解性:Soluble in DMSO ≥20mg/mL; Soluble in Methanol ≥2mg/mL;Soluble in Ethanol ≥0.01mg/mL 纯度:HPLC≥98% 外观(性状):Black Solid 储存条件:Powder:2-8℃,2 years;Insolvent(母液):-20℃,6 months;-80℃,1 year
|
靶点: |
Others |
产品详情
是一种稳定的自由基,可用于测量抗氧化剂的自由基清除活性。DPPH 中氮原子的奇数电子通过从抗氧化剂吸收氢原子而还原为相应的肼。DPPH 方法可用于水性和非极性有机溶剂中,并可用于检查亲水性和亲脂性抗氧化剂。
使用本产品的应用案例(仅供参考)
DPPH scavenging activities (DPPH实验浓度:0.4mM;溶剂:乙醇)
The DPPH scavenging activities (%) of fresh MPN-GA samples (CON, A1, A2, F1 and F2) were evaluated via using the methods of Zhang et al. [17]. To be specific, fresh MPN-GAs (2.0 mL, 0, 0.01, 0.05, 0.25, 1 and 4 mg/mL), DPPH ethanol solution (0.8 mL, 0.4 mM) were incorporated into the water (4.0 mL). Then, obtained mixtures were centrifuged (6000 rpm, 15 min) after the reaction for 30 min (4 ◦C, in the darkness). Final DPPH scavenging activities were assessed through the transformation of measured absorbance (517 nm).
来源文献:Chen J, Chen X, Zhou G, Xu X. New insights into the ultrasound impact on covalent reactions of myofibrillar protein. Ultrason Sonochem. 2022 Mar;84:105973. doi: 10.1016/j.ultsonch.2022.105973. Epub 2022 Mar 3. PMID: 35272240; PMCID: PMC8913343.
Antioxidant capacity (DPPH实验浓度:0.2mM;溶剂:乙醇)
Film samples (4–20 mg) were added to 10 mL of distilled water and stirred until completely dissolved. DPPH solution (0.2 mmol/L) was prepared in anhydrous ethanol (≥ 99.7 %). Film solution (2 mL) was mixed with 2 mL of DPPH solution and the absorbance at 517 nm measured after reacting for 30 min at 25 ◦C in the dark. The DPPH radical scavenging rate of a Vit C solution at the same concentration as the film solution was determined as a positive control. The DPPH radical scavenging activity of film samples was calculated as follows: DPPH radical scavenging activity (%) = (A0 − A1 + A2)/ A0 × 100
where A0 is the absorbance of the mixture of distilled water and DPPH solution, A1 is the absorbance of the mixture of film or Vit C solution and DPPH solution, and A2 is the absorbance of the mixture of anhydrous alcohol and film or Vit C solution.
来源文献:Liu Z , Du M , Liu H , et al. Chitosan films incorporating litchi peel extract and titanium dioxide nanoparticles and their application as coatings on watercored apples[J]. Progress in Organic Coatings, 2021, 151:106103.